中国财富出版社>所有分类>图书>科工类>科技类图书>金属、机电及其他工具书>其他工具书

最近浏览过

    机器学习、智能计算与高光谱遥感影像分类应用研究 -----

      收藏此商品
        • 作  者:亓呈明 胡立栓       
        • ISBN:9787504744340
        • 出版社:中国财富出版社       上架时间:2018年08月24日
        • 版  次:第1版                页   数:204
        • 开  本:16             字  数: 229(千字)
        • 装  帧:平装             纸  张: 12.75
        • 市场价:56.00 商品编号:201808241533442018870272
        • 折扣价:¥56.00
        • 人 气:已有 人关注
        • 用户评分:(0人评)
        请选择您要的商品信息
          购买数量: - +(库存量:1000

          宝贝已成功添加到购物车

          购物车共种宝贝合计:

          去购物车结算 继续购物

        • 图书详情

        • marc数据

        • 相关商品

        • 用户评价

        • 销售记录

        • 购买咨询

        本书系统总结了作者近年来在高光谱遥感影像分类、机器学习、智能计算等方面的研究成果,在介绍高光谱遥感影像分类基础知识、机器学习、智能计算等常用方法的基础上,探讨影响分类准确率的因素,重点对多核集成学习及粒子群等方法在高光谱遥感影像分类中的应用进行了深入探讨。本书将作者研究过程与体会与大家分享,抛砖引玉,希望进一步促进遥感图像的分析与理解水平,这也是本书撰写的初衷。全书共分为8章。第1章主要介绍高光谱遥感的基本概念、高光谱遥感影像分类的基础和原理、分类研究现状、存在的问题与发展趋势。第2章主要介绍遥感影像分类中的机器学习方法,包括最小距离分类法、最大似然分类法、人工神经网络分类法、决策树分类法、K-均值算法及迭代自组织数据分析法。第3章主要介绍统计学习理论与支持向量机的原理、研究现状、存在问题及发展方向。第4章主要介绍高光谱遥感影像的降维方法,包括遗传算法、主成分分析与核主成分分析、线性判别分析与核线性判别分析、投影寻踪、流形学习等。第5章采用改进粒子群优化算法对高光谱影像数据进行波段选择和SVM(支持向量机)参数优化。第6章采用Kullback-Leibler散度构造支持向量机的核函数,并应用于多核集成框架的基分类器。第7章基于改进最优指数进行特征选择,结合参数优化后的SVM分类器对高光谱影像数据进行分类。第8章基于互信息和J-M距离(一种光谱可分性测度)提出两阶段特征选择方法,并引入随机化算法构建多核集成学习框架。在每章中都评估了分类器的各种参数对分类精度的影响。

        最有用的评价:

        暂无最有用的评论

        如购买过程中有任何疑问,欢迎向我们咨询

        咨询类型:
        咨询内容:
        不促销
         编辑推荐:

        高光谱遥感技术已经成为遥感发展的前沿,高光谱遥感影像分类是遥感应用不可缺少的关键环节,分类精度又直接影响分类效果。通过采用推理及样本学习等方式从数据中获得相应的理论,本书针对高光谱遥感影像数据的高维特性,在系统分析和总结机器学习、智能计算、信息论基本理论和方法的基础上,从高维数据降维、波段特征选择与特征提取、分类器的构造和参数优化等角度展开高光谱遥感影像分类的研究。全书共8章,分析了高光谱遥感影像的研究现状,指出了当前高光谱遥感影像分类所存在的问题,在机器学习、智能计算算法理论研究的基础上,结合实例,详细介绍了改进的机器学习、智能计算算法及其在遥感分类处理中的应用情况。

         作者简介:
         亓呈明,计算机应用技术硕士,地理信息工程博士。主要研究方向为:机器学习、计算智能、统计学习、遥感图像处理。发表30余篇国际检索的研究论文,参与了相关研究项目10余项。
            胡立栓,计算机应用技术硕士,地理信息工程博士。主要研究方向为:机器学习、遥感信息处理、GIS技术应用、网格服务、分布式计算等。发表20篇研究论文,其中EI检索8篇,参与了相关研究20余项。
         
         图书目录:
        1高光谱遥感影像分类概述1
        1.1高光谱遥感影像1
        1.2高光谱遥感影像分类概述5
        1.3遥感影像分类研究现状9
        1.4遥感影像分类存在的问题10
        1.5本书试验数据13
        2遥感影像分类中的机器学习方法19
        2.1机器学习分类方法20
        2.2最小距离分类法22
        2.3最大似然分类法23
        2.4人工神经网络分类法24
        2.5决策树分类法29
        2.6K-均值算法31
        2.7迭代自组织数据分析法32
        2.8实验结果与分析34
        2.9本章小结36
        3统计学习理论与支持向量机40
        3.1统计学习理论40
        3.2最优化理论45
        3.3支持向量机49
        3.4实验结果与分析61
        3.5本章小结62
        4高光谱遥感影像的降维方法68
        4.1高光谱遥感影像降维现状68
        4.2特征选择与特征提取70
        4.3遗传算法80
        4.4主成分分析与核主成分分析84
        4.5线性判别分析与核线性判别分析89
        4.6投影寻踪法95
        4.7流形学习98
        4.8纹理特征提取103
        4.9实验结果与分析105
        4.10本章小结114
        5基于BPSO的高光谱影像特征选择与分类117
        5.1粒子群优化算法117
        5.2粒子群优化算法在高光谱分类中的应用121
        5.3实验结果与分析125
        5.4本章小结135
        6基于Kullback-Leibler的多核集成分类137
        6.1引言137
        6.2集成机器学习139
        6.3基于Kullback-Leibler核函数的多核集成框架144
        6.4实验结果与分析147
        6.5参数分析155
        6.6本章小结157
        7基于改进最优指数的特征选择与分类165
        7.1引言165
        7.2支持向量机参数优化方法166
        7.3基于最优指数的多核集成框架167
        7.4实验结果与分析169
        7.5本章小结178
        8基于互信息混合测度的特征选择与分类181
        8.1引言181
        8.2两阶段波段选择与多核集成框架182
        8.3实验结果与分析186
        8.4本章小结193
         
         媒体评论:

        暂无信息!

        • 暂无资料
        • 暂无资料
        • 暂无资料
        • 暂无资料
        • 暂无资料